Model-driven stimulation for targeted functional restoration in chronic spinal cord injury

Injury to the spinal cord can lead to loss of motor and sensory function below the level of the lesion due to interruption of neural pathways. This has a devastating impact on quality of life, with little prospect of recovery beyond the acute phase. Recent advances using electrical neuromodulation have shown promise in restoring motor function, though these approaches are limited by the risks associated with the implantation of invasive stimulation systems.

The development of a non-invasive system for targeted spinal cord stimulation would represent a significant advance by allowing stimulation-facilitated rehabilitation while avoiding the risks associated with chronic implantation. Currently, non-invasive stimulation technologies are limited by a poor understanding of the distribution of transcutaneous electrical charge in the underlying tissues and how this distribution of charge influences the underlying neural tissue.

We are therefore developing a system for accurately predicting the distribution of a non-invasively delivered electrical charge in the underlying tissue and the effect that this stimulation will have on the neural tissue of the spinal cord. This would open the possibility of specifically targeted stimulation for functional recovery while completely eliminating the risks posed by implantation procedures and the presence of chronically implanted electronic devices.

In the long term, this work may allow improved functional restoration for patients following chronic spinal cord injury, with an associated improvement in functional status and quality of life. Through the use of non-invasive technology, the barriers to access and risks associated with implanted stimulators are removed, allowing far greater access to improved functional recovery among spinal cord injured patients.